GMO corn that tolerates temperature drops could help farmers protect crop yields

GMO corn that tolerates temperature drops could help farmers protect crop yields

Around the world, each person eats an average of 70 pounds of the grain each year, with even more grown for animal feed and biofuel. And as the global population continues to boom, increasing the amount of food grown on the same amount of land becomes increasingly important.

One potential solution is to develop crops that perform better in cold temperatures. Many people aren’t aware that corn is a tropical plant, which makes it extremely sensitive to cold weather. This trait is problematic in temperate climates where the growing season averages only 4 or 5 months — and where more than 60% of its 1.6 trillion pound annual production occurs.

A chilling-tolerant strain could broaden the latitudes in which the crop could be grown, as well as enable current farmers to increase productivity.

A group of researchers led by David Stern, president of the Boyce Thompson Institute, have taken a step closer to this goal by developing a new type of corn that recovers much more quickly after a cold snap.

The research is described in a paper published online in Plant Biotechnology Journal on December 20.

This work built on research published in 2018, which showed that increasing levels of an enzyme called Rubisco led to bigger and faster-maturing plants. Rubisco is essential for plants to turn atmospheric carbon dioxide into sugar, and its levels in corn leaves decrease dramatically in cold weather.

In the latest study, Stern and colleagues grew corn plants for three weeks at 25°C (77°F), lowered the temperature to 14°C (57°F) for two weeks, and then increased it back up to 25°C.

“The corn with more Rubisco performed better than regular corn before, during and after chilling,” said Coralie Salesse-Smith, the paper’s first author. “In essence, we were able to reduce the severity of chilling stress and allow for a more rapid recovery.” Salesse-Smith was a Cornell PhD candidate in Stern’s lab during the study, and she is now a postdoctoral researcher at the University of Illinois.

Indeed, compared to regular corn, the engineered corn had higher photosynthesis rates throughout the experiment, and recovered more quickly from the chilling stress with less damage to the molecules that perform the light-dependent reactions of photosynthesis.

The end result was a plant that grew taller and developed mature ears of corn more quickly following a cold spell.


“The corn we developed isn’t yet completely optimized for chilling tolerance, so we are planning the next generation of modifications,” said Stern. “For example, it would be very interesting to add a chilling-tolerant version of a protein called PPDK into the corn and see if it performs even better.”

The researchers believe their approach could also be used in other crops that use the C4 photosynthetic pathway to fix carbon, such as sugar cane and sorghum.

Read the original post

O artigo foi publicado originalmente em GLP.

Comente este artigo
Anterior ICNF quer lançar aplicação digital para acompanhar recuperação do lince ibérico
Próximo Previsão de longo prazo - 10 fev a 08 mar. 2020

Artigos relacionados


Mercadona aposta no morango nacional

A Mercadona iniciou a colaboração com a Sudoberry, fornecedor especialista de frutos vermelhos, à qual comprou mais de 150 toneladas de morangos em 2020, quantidade que prevê […]


Comissão Vitivinícola Regional Távora-Varosa nomeia nova direção

José Fernandes Pereira é o novo Presidente da Direção da Comissão Vitivinícola Regional Távora-Varosa – CVR Távora- […]


Governo decreta situação de crise energética

[Fonte: Governo] O Conselho de Ministros declarou a situação de crise
, para o período compreendido entre as 23h59 de 9 de
agosto de 2019 e as 23h59 de 21 de agosto de 2019, […]